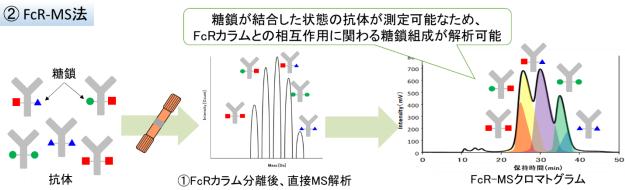
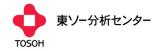


【技術資料】 FcR-MS によるインタクト抗体の糖鎖組成解析

概要

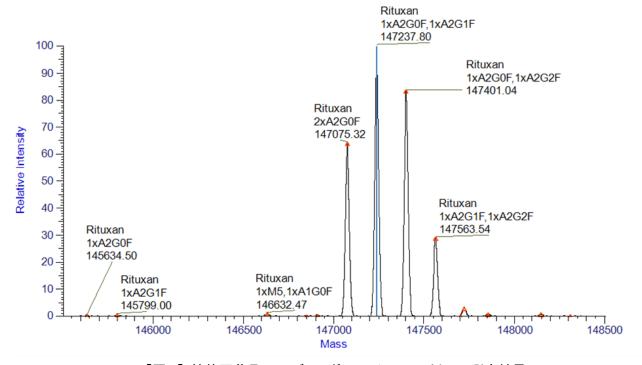

FcR-IIIA-NPRカラム(以下、FcRカラム)は、N型糖鎖に起因する抗体 Fc 領域の構造変化を認識し、抗体依存性細胞傷害(ADCC)活性に基づいた抗体の分離が可能です $^{1)}$ 。従来法で糖鎖解析を行うには、FcR カラム分取・抗体からの糖鎖切断・誘導体化等の多くの工程を必要とします。さらに、糖鎖の切断を行うため、糖鎖が結合したままのインタクトな状態の抗体は、解析できません。

FcR カラムを用いたアフィニティークロマトグラフィーとインタクト MS 解析技術を組み合わせることで、抗体と FcR カラムとの相互作用に基づいた LC 分離と MS スペクトルを用いた糖鎖組成の推定を行います(FcR-MS 法)。FcR-MS 法は、糖鎖が結合した状態の抗体(インタクト抗体)の LC 分離及び MS 測定ができるため、インタクト抗体の FcR カラムとの相互作用に関わる糖鎖組成が解析可能です(図1)。


(参照【技術資料 T2305】LC-MS によるインタクト抗体の糖鎖組成解析)

① 従来法(FcRⅢAカラム分取及び分取物のMSによる糖鎖構造解析)

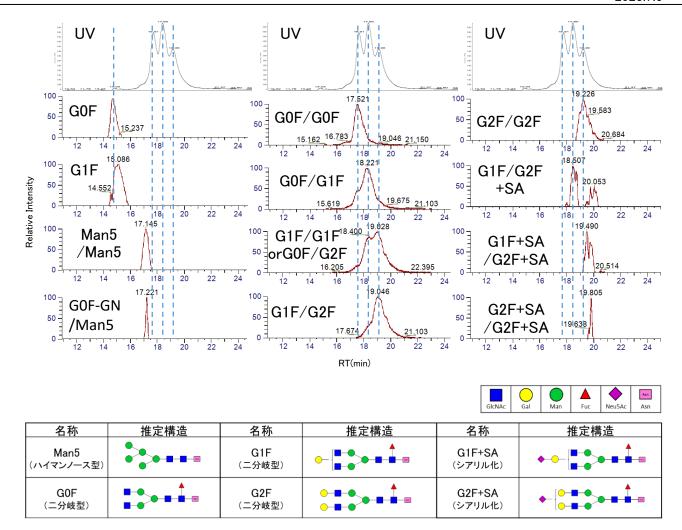
【図 1】抗体の糖鎖組成解析イメージ(①従来法、②FcR-MS 法)


試料

市販の抗体医薬品 A

手順

市販の抗体医薬品 A を用い、脱塩処理を行ったのち、FcR-MS 測定を行いました。


試料由来の多価イオンのマススペクトルをデコンボリューションにより一価へ変換し(図 2)、得られた分子量から糖鎖構造の帰属を行いました(表 1)。解析ソフトを用いて、抽出イオンクロマトグラムを作成し、各糖鎖組成のクロマトグラムを可視化しました(図 3)。

【図 2】抗体医薬品 A のデコンボリューションスペクトル測定結果

【表1】 抗体医薬品 A の糖鎖組成の帰属結果

推定糖鎖組成	平均質量 (Da)	理論質量 (Da)	質量誤差 (ppm)
G0F	145634.5	145630.0	30.9
G1F	145799.0	145792.2	47.0
Man5/Man5	146632.5	146618.9	92.9
G0F-GN/Man5	146853.6	146847.1	44.3
G0F/G0F	147075.3	147075.3	0.2
G0F/G1F	147237.8	147237.5	2.1
G1F/G1F or G0F/G2F	147401.0	147399.6	9.5
G1F/G2F	147563.5	147561.8	12.0
G2F/G2F	147722.8	147723.9	7.5
G1F/G2F+SA	147856.0	147853.0	19.9
G1F+SA/G2F+SA	148148.7	148144.3	29.8
G2F+SA/G2F+SA	148309.9	148306.4	23.5

【図3】抗体医薬品AのFcR-MS測定結果

結果と考察

抗体医薬品 A において、片側のみ糖鎖が結合した抗体、ハイマンノース型糖鎖含有抗体、二分岐型糖鎖含 有抗体、シアリル化糖鎖含有抗体の順に溶出が確認されました。二分岐型糖鎖に着目すると、末端のガラクト ース(非還元末端ガラクトース)結合量の増加に伴う溶出の遅延が確認されました。これは ADCC 活性の向上 を示しており、ガラクトース残基が多いほど活性が向上するという報告 2と一致しています。

まとめ

FcR-MS 法により、抗体と FcR カラムとの相互作用に基づいた糖鎖組成の解析が可能です。本手法は抗体に糖鎖が結合した状態で測定するため、非対称な糖鎖の組み合わせを有する抗体医薬品も評価可能です。

- 1) 寺尾陽介、山中直紀他、東ソ一研究・技術報告第61巻(2017)
- 2) D. Reusch, M. L. Tejada, Glycobiology, vol.25, no.12 (2015)

適用分野:医薬品・化粧品・農薬

キーワード: 抗体医薬品、IgG、糖鎖、糖タンパク質