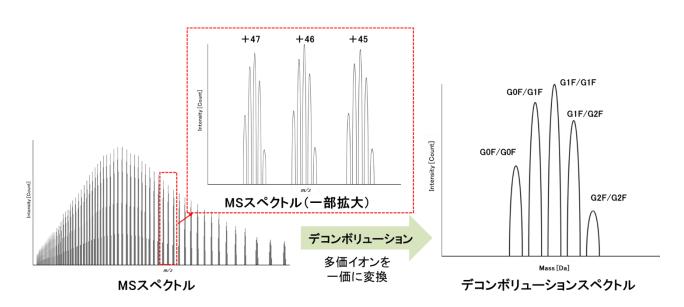
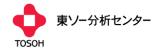

【技術資料】 LC-MS によるインタクト抗体の糖鎖組成解析

概要

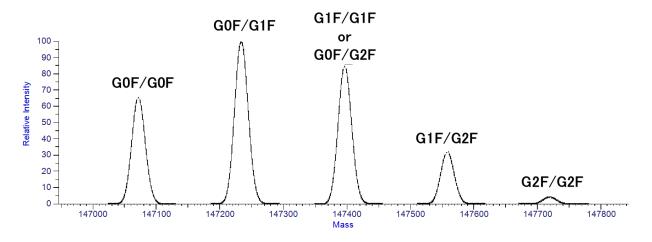

抗体医薬品として広く用いられている IgG は、Y字型の構造をした糖タンパク質であり、生産時の様々な修飾 反応の結果、多様な分子構造をとることが知られています(図 1)。特に、抗体医薬品において、Fc 領域に付加 した糖鎖構造が抗体依存性細胞傷害(ADCC)活性に大きく影響することが報告されているため、糖鎖組成の 解析は、抗体医薬品の開発や研究において非常に重要になります。

インタクト抗体*の LC-MS 測定は、プロテアーゼ処理などの前処理を行わずにそのままの状態で測定するため、抗体に結合した状態の糖鎖組成の解析が可能です(図2)。今回は、市販の抗体医薬品 A を対象として、糖鎖組成を解析した事例を紹介します。


* インタクト抗体:プロテアーゼ処理等を行なっていない状態の抗体

【図1】抗体と糖鎖構造の例

【図 2】LC-MS によるインタクト抗体の糖鎖組成解析のイメージ


試料

市販の抗体医薬品 A

結果

抗体医薬品 A は、脱塩処理を行った後 LC-MS 測定を行いました。試料由来の多価イオンのマススペクトルをデコンボリューションにより一価へ変換し、得られた分子量から糖鎖構造を帰属しました(図 3)。

理論質量と比較した結果、各ピークの質量精度は 20~30 ppm 前後であり、高い質量精度での測定が可能です。また、検出されたイオン強度から、各糖鎖組成の相対存在率も推定できます(表 1)。

【図3】抗体医薬品 A のデコンボリューションスペクトル

【表 1】抗体医薬品 A の解析結果

推定糖鎖組成	G0F/G0F	G0F/G1F	G1F/G1F or G0F/G2F	G1F/G2F	G2F/G2F
平均質量 (Da)	147071.7	147233.5	147396.2	147557.6	147718.6
理論質量 (Da)	147075.4	147237.5	147399.6	147561.8	147723.9
質量誤差(ppm)	24.8	26.9	23.5	28.3	35.9
イオン強度(Counts)	1.21E+09	1.83E+09	1.56E+09	5.89E+08	4.75E+07
相対存在率(%)	23.1	35.0	29.8	11.2	0.9

まとめ

インタクト抗体の LC-MS 測定により、抗体に結合した状態の糖鎖組成の解析が可能です。抗体医薬品等の 糖鎖構造の不均一性の解析に有用です。

適用分野:医薬品・化粧品・農薬

キーワード:抗体医薬品、IgG、糖鎖、糖タンパク質