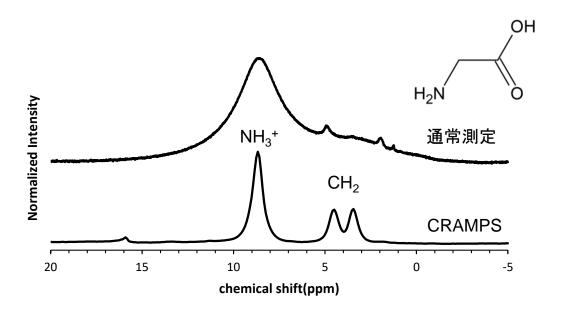


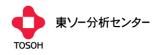
【技術資料】NMR 応用例~固体高分解能測定、固体 2 次元測定事例の紹介

概要

核磁気共鳴(Nuclear Magnetic Resonance: NMR)法は、分子構造や様々な分子間相互作用、分子の運動状態などを調べる手法で、高分子化学、生物化学、医学等の広範囲な分野で活用されています。今回は、固体NMRによる解析手法として、高分解能測定手法、2次元NMRによる分子構造解析手法を紹介します。


1. 高分解能測定手法

固体 NMR での高分解能測定手法として、CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) 法、MQMAS (Multiple Quantum Magic Angle Spinning) 法を紹介します。


1) CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy)法

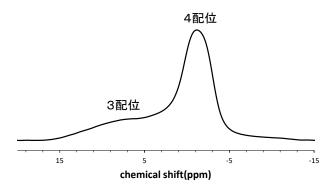
固体試料の ¹H NMR では、¹H−¹H 間の双極子相互作用によりピークの線幅が広くなり、詳細解析が困難な場合があります。そこで同種核双極子相互作用を取り除く方法として CRAMPS 法が用いられます。

例として、 α -グリシンの固体 ¹H NMR 結果を示します【図 1】。通常の ¹H MAS NMR ではピークが広幅で詳細解析は困難ですが、CRAMPS 法では鋭いピークが 3 成分観測されました。 CH_2 ピークはグリシンの結晶構造によりピーク本数が変化し、 α -形の結晶では 2 本(CH_2 の水素が非等価)、 γ -形の結晶では 1本(CH_2 の水素が等価)観測されるため、スペクトル形状から結晶多形を区別することが可能です ¹⁾。

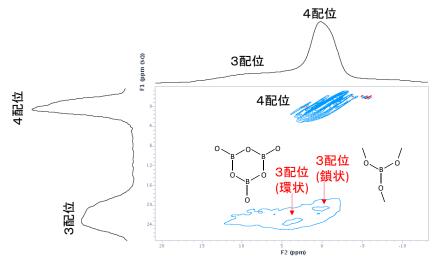
【図 1】 α-グリシンの固体 ¹H スペクトル(上:通常測定(MAS のみ)、下: CRAMPS)

2) MQMAS (Multiple Quantum Magic Angle Spinning) 法

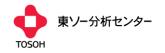
MQMAS 法は四極子核のうち、半整数スピンを有する核種(11 B、 23 Na、 27 Al 等【図 2】)での高分解能スペクトルを取得する測定手法です。


¹H		半整数スピンを有する核種															³He
⁷ Li	9Be						¹¹ B	13 C	¹⁵ N	¹⁷ O	¹⁹ F	²¹ Ne					
²³ Na	²⁵ Mg						²⁷ Al	²⁹ Si	³¹ P	³³ S	35CI	Ar					
³⁹ K	⁴³ Ca	⁴⁵ Sc	⁴⁷ Ti	⁵¹ V	53Cr	55Mn	⁵⁷ Fe	⁵⁹ Co	⁶¹ Ni	⁶³ Cu	⁶⁷ Zn	⁶⁹ Ga	⁷³ Ge	⁷⁵ As	⁷⁷ Se	⁷⁹ Br	⁸³ Kr
85Rb	⁸⁷ Sr	89 Y	⁹¹ Zr	⁹³ Nb	⁹⁵ Mo	Тс	¹⁰¹ Ru	¹⁰³ Rh	¹⁰⁵ Pd	¹⁰⁹ Ag	¹¹¹ Cd	¹¹³ ln	¹¹⁵ Sn	¹²¹ Sb	¹²⁵ Te	¹²⁷	¹²⁹ Xe
¹³³ Cs	¹³⁷ Ba	La	¹⁷⁷ Hf	¹⁸¹ Ta	¹⁸³ W	¹⁸⁷ Re	¹⁸⁷ Os	¹⁹³ lr	¹⁹⁵ Pt	¹⁹⁷ Au	¹⁹⁹ Hg	²⁰³ TI	²⁰⁷ Pb	²⁰⁹ Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

【図2】半整数スピンを有する核種


例として、ホウ素を含むガラスの ¹¹B NMR スペクトルを次に示します。まず、【図 3】は通常の ¹¹B MAS NMR スペクトルで、3 配位のホウ素 (BO_3) と、4 配位のホウ素 (BO_4) のピークが観測されました。

【図 4】は 11 B MQMAS スペクトルで、横軸(F2 軸)が通常のスペクトル、縦軸(F1 軸)が高分解能スペクトルに対応した 2 次元のスペクトルが得られます。


MQMAS スペクトルでは、通常のスペクトルでは 1 成分として観測されていた 3 配位ピークが 2 本観測され(図中 ↓)、それぞれ環状のホウ素と、鎖状のホウ素に帰属されました ²⁾。

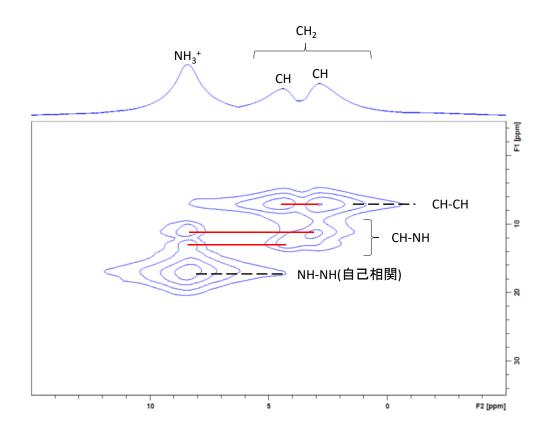
【図3】ホウ素を含むガラスの1B MAS NMR スペクトル

【図 4】ホウ素を含むガラスの 11B MQMAS スペクトル

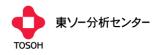
2. 分子構造解析手法

固体 NMR による有機材料や高分子材料の分子構造解析手法として、2 次元測定法である ¹H-¹H DQMAS (Double Quantum Magic Angle Spinning)法、及び ¹H-¹³C FSLG-HETCOR(Frequency Switched Lee-Goldburg HETero nuclear shift CORration spectroscopy)法について紹介します。

1) 1H-1H DQMAS(Double Quantum Magic Angle Spinning)法

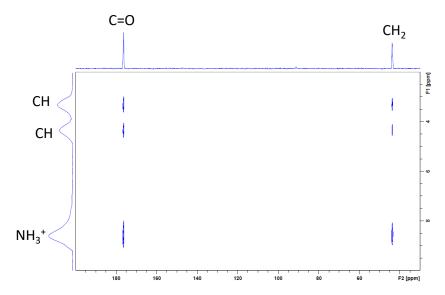

DQMAS 法は、双極子相互作用による磁化移動を利用し、近傍に存在する同種核間の相関ピークを取得する方法です。

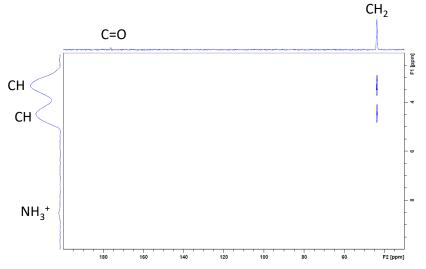
例として、 α -グリシンの 1 H- 1 H DQMAS スペクトルを示します【図 5】。縦軸、横軸ともに 1 H 軸で、図の赤線で示した横に並んだピークの成分同士が近傍に存在していることを表しています。また、縦軸の化学シフト値は、相関するピークの化学シフト値を足した値となります(例えば、 3 ppm のピークと 5 ppm のピーク が相関する場合、縦軸の化学シフト値は 3 + 5 = 8 ppm となります)。


【図 5】では CH-CH 相関、及び 2 種類の CH-NH 相関ピークが得られ、各官能基が近傍に存在することを示しています。

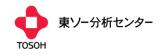
なお 1 H DQMAS では、スペクトルの分解能を向上させるため、高磁場装置の使用や、高速 MAS 回転での測定が推奨されます。【図 5】の測定では 700MHz NMR、固体 1.3mm プローブを用い、60kHz の MAS 回転下で測定しています。

高磁場装置や小径プローブの使用が難しい場合、双極子相互作用を除去可能な CRAMPS 法を利用した 2 次元測定を用いることで、通常プローブでも高分解能なスペクトルを得ることが可能です 3。


【図 5】 α -グリシンの ¹H DQMAS スペクトル (700MHz、MAS = 60kHz)


例として、 α -グリシンの $^1H^{-13}C$ FSLG-HETCOR スペクトルを示します【図 6、7】。横軸が ^{13}C 軸、縦軸が 1H 軸です。【図 6】では、 CH_2 、C=O の ^{13}C 成分と、CH、 NH_3 の 1H 成分との相関ピークが観測されています。

測定パラメータである接触時間を短くし、より距離が近い $^1H-^{13}C$ 相関のみが観測されるよう調整すると【図 7】、近い距離にある CH_2 の ^{13}C と 1H との相関ピークが主に観測され、H から離れている C=O や、C から離れている NH_3 の相関ピークはほとんど観測されませんでした。接触時間を短くすることで、 $^1H-^{13}C$ HSQC 測定のように直接結合した 1H 、 ^{13}C 成分を調べることが可能です。


本手法は、分子間の相互作用解析や、結晶状態の混合度合い(共結晶か否か)を調べる際にも利用されています。

【図 6】 α-グリシンの ¹H-¹³C FSLG-HETCOR スペクトル(接触時間:3.5ms)

【図 7】 æグリシンの ¹H-¹³C FSLG-HETCOR スペクトル(接触時間:50 ょ)

参照文献

- 1) 日本化学会 編、「第5版 実験化学講座 8 NMR·ESR」、丸善出版(2006)
- 2) L. Du and J. F. Stebbins, Chem. Mater., 15, 3913(2003).
- 3) 薛 献宇、神崎 正美、地球化学、42(4)、133(2008).

適用分野:分子構造解析、有機材料、無機材料、高分子材料 キーワード:ガラス、α-グリシン、固体 NMR、2次元 NMR